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Abstract

The use of artificial neural networks (ANNs) for response surface modelling in HPLC method development for
amiloride and methychlothiazide separation is reported. The independent input variables were pH and methanol
percentage in mobile phase. The outputs were capacity factors. The results were compared with a statistical method
(multiple nonlinear regression analysis). Networks were able to predict the experimental responses more accurately
than the regression analysis. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

An important aspect of method development in
liquid chromatography is to achieve adequate sep-
aration of all components in a given sample in a
reasonable time. Consequently optimization of
the different chromatographic factors like pH,
mobile phase composition, i.e. organic modifier
concentration and temperature is critical for suffi-
cient resolution. Retention mapping techniques
are important optimization methods enabling the
global optimum to be found [1,2]. The main pur-
pose of this study was to investigate the usefulness

of artificial neural networks (ANNs) [3–6] for
response surface modelling in HPLC optimisation
[7] and to compare the results to those calculated
on the basis of the multiple regression method [8].
The combined effect of pH and mobile phase
composition on the reverse-phase liquid chro-
matographic behaviour of amiloride and methy-
chlothiazide was investigated.

The effects of these factors were examined in
the range of conditions where they provided ac-
ceptable retention and resolution. The effects of
methanol (10–50%) and pH (2.5–4.5) were stud-
ied. The results show that neural networks offer
promising possibilities in HPLC method develop-
ment. The predictive results obtained by ANNs
were better than those obtained with multiple
regression models.* Corresponding author.
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1.1. Neural networks

ANNs are mathematical systems that simulate
biological neural networks. They consists of pro-
cessing elements (neurons) organized in layers and
interconnections between the elements.

ANNs analysis is quite flexible as regards the
amount and form of the training (experimental)
data which makes it possible to use more informal
experimental designs than with statistical ap-
proaches. Also, neural network models might gen-
eralize better than regression models since
regression analyses are dependent on predeter-
mined statistical significance levels. This means
that less significant terms are not included in the
model. With the ANNs method all data are used
potentially making the models more accurate.

Usually a neural network in its basic form is
composed of several layers of neurons, there being
one input layer, one output layer and at least one
hidden layer (Fig. 1). The use of at least one
hidden layer enables the ANNs to describe non-
linear systems. A problem in constructing ANNs
is to find the optimal number of hidden neurons.

Wij is the weight-connection to neuron j from
neuron i, xi denotes the input values and biasj is
the bias of neuron j. The activation of the jth

Table 1
Fitted K % values for methylclothiazide (M) and amiloride (A)
obtained by ANN model with 10 hidden neurones and 15 000
training cycles

Training data Measured K % Fitted values

AMpH AMethanol M

2.8 0.780 2.250 0.939 2.25810.0
10.0 2.7790.9972.7701.0803.5

0.8674.390 4.2880.8704.210.0
0.52230.0 0.3522.8 0.6510.390

3.5 0.866 0.320 0.8180.24030.0
1.1800.3394.230.0 0.325 0.770

0.1850.5192.850.0 0.437 0.290
0.272 0.57850.0 3.5 0.530 0.504

0.180 0.84550.0 0.1694.2 0.590
0.2803.5 0.843 0.320 0.81830.0

R2= 0.999 0.999
SSE= 0.0003

1.0111.2873.2 2.64810 2.279
3.0 0.532 1.450 0.53315 1.453

0.8000.3133.8 0.28330 1.078
0.488 0.16850 3.0 0.494 0.211

0.888 0.899R2=
0.0085SSE=

SSE, Sum of squared errors; R2, Coefficients of multiple
determination.

neuron (Netj) is defined as the sum of the
weighted input signal to that neuron:

Netj=%
i

wjixi+biasj

This activation is transformed to the neuron
output by a transform function. Different ANN
classes use different definitions of the activation
function. The most common transform function
in back-propagation neural networks (BNN) is a
sigmoidal function:

yj=
2

1+e−Netj
−1

Each neuron in the input layer is connected to
each neuron in the hidden layer and each neuron
in the hidden layer is connected to each neuron in
the output layer to produce the output vector.
Information in a BNN is stored as weights, which
are connections between neurons in successive

Fig. 1. A simple 2×5×2 ANN. The lines connecting the
neurons represent the weights. Also shown are the bias neu-
rons used to shift the neuron transfer function and to improve
the network performance.
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layers and as bias values (neuron activation
threshold). The neural network used in this work
is the feed-forward, back-propagation neural net-
work type, most often used in analytical applica-
tions. Information from various sets of inputs are
fed forward through the BNN to optimize the
weight between neurons, or to ‘train’ it. The error,
or bias, in prediction is then propagated through
the system and the inter-unit connections are
changed to minimize the error in the prediction.
This process is continued with multiple training
sets until the error is minimized across many sets.

The error of the network is defined as the
squared difference (SSE) between the target values
t and the outputs y of the output neurons:

MSE=
1

p ·m
%
p

k=1

%
m

l=1

(ykl− tkl)2

where p is the number of training sets, and m is
the number of output neurones in the neural
network.

During training, neural techniques need to have
some way of evaluating their own performance.
Since they are learning to associate the inputs
with outputs, evaluating the performance of the
network on the training data may not produce the
best results. If a network is left to train for too
long, it will overtrain and will lose the ability to
generalize. Thus three types of data sets are used:

Fig. 3. Response surfaces for multifactor effect of pH and
Methanol % on (a) methylclothiazide and (b) amiloride capac-
ity factors generated by ANN with 10 hidden neurons at
15 000 training cycles.

Fig. 2. Effect of the number of hidden neurons and number of
cycles during training on the SSE.

training data: used to train network
test data: used to monitor the neural network
performance during training
validation data: used to measure the perfor-
mance of a trained application, each with corre-
sponding error

1.2. Multifactor regression analysis

A response surface methodology based on mul-
tifactor regression analysis [9,10], was used to
specify the capacity factors of amiloride and
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Table 2
Fitted K % values for methylclothiazide (M) and amiloride (A)
obtained by RSM

Measured K % Fitted K %Methanol pH

M A M A

0.8632.250 2.1620.78010.0 2.8
1.080 2.770 0.887 3.09010.0 3.5

4.1750.8934.3900.87010.0 4.2
0.276 0.445530.0 2.8 0.390 0.522
0.317 0.81430.0 3.5 0.240 0.866

1.180 0.33930.0 4.2 0.339 1.338
0.290 0.468 0.4640.43750.0 2.8

0.530 0.504 0.52550.0 0.2733.5
0.2370.5640.1800.59050.0 4.2

0.280 0.843 0.317 0.81430.0 3.5

0.98330.9319R2=
S.E.= 0.1016 0.2626

Standard error of estimation (S.E.).
Coefficients of multiple determination (R2).

methyclothiazide to all combinations of pH val-
ues (2.8–4.2) and all combinations of methanol
composition in the mobile phases (10–50%). To
construct the model a minimum number of ex-
periments has to be performed and the capacity
factor has to be measured at the design points.
These measurements are performed simulta-
neously according to the experimental design
and used for modelling the response surface of
every solute in the sample. A response surface
can simultaneously represent two independent
and one dependent variable when the mathemat-
ical relationship between the variables is known,
or can be assumed. Independent variables were
pH and methanol percentage in the mobile
phase. The dependent variable was the capacity
factor. Ten experimental data were fitted to a
polynomial mathematical model by adjusting
parameters until calculated values were in close

Table 3
Model fitting results for methylclothiazide (M) and amiloride (A)

M
Parameter 0.0012−0.01880.00100.1413−0.07161.2001

0.00360.00020.95820.01631.6672 0.1357S.E.

A
0.4029Parameter −0.0606 0.72027 0.0022 0.1596 −0.0400

0.0421 2.4763 0.0004 0.3508S.E. 0.00944.3085

ANOVA for RSM model fitting
Sum of SquaresM P-valueF-Ratiodf

5 10.9* 0.02Model 0.56465
4Error 0.04129
3 0.062**Lack of fit 0.00647

Pure error 10.03483
Total 90.60593

A
0.00147.1*516.2346Model

Error 0.27575 4
0.00334 3 0.004**Lack of fit

1Pure error 0.27 241
9Total 16.5103

* F5,4=6.25.
** F3,1=215.7.
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agreement with the experimental values [11]. The
capacity factors can than be predicted at every pH
and methanol percentage in mobile phase
composition.

2. Experimental

2.1. Equipment

Separations were made on a Waters 5 mm
mBondapak C-18 column (300×3.9 mm i.d. Wa-
ters Milford, MA). The injection volume was 10
ml, elution was performed at a flow rate of 1.5 ml
min−1 and the column was maintained at ambi-
ent temperature. The absorbance was monitored
at 286 nm. The mobile phase was 0.05 M aqueous
solution of KH2PO4-methanol (pH adjusted with
phosphoric acid).

2.2. Sol6ents and chemicals

Standards of amiloride and methylclothiazide
and Lometazid® tablets were supplied by ICN
Galenika (Belgrade, Serbia). The chromato-
graphic internal standard was phenacetin. All the
solvents used for the preparations of the mobile
phase were HPLC grade and the mixtures were
filtered and degassed before use.

2.3. Solutions

2.3.1. Internal standard solution
A 800 mg ml−1 solution of phenacetin in

methanol was prepared.

2.4. Stock solution

About 10 mg of amiloride reference material
and 5 mg of methyclothiazide reference material
was precisely weighed, dissolved in internal stan-
dard solution and diluted to 100 ml with the same
solvent to form a stock solution.

2.5. Standard solutions

Working standard solutions were prepared by
dilution of a 4 ml volume of this solution to 10 ml

with the internal standard solution.

2.6. Sample preparation

A finely powdered tablet was accurately trans-
ferred to a 100 ml calibrated flask and diluted to
volume with internal standard solution. The mix-
ture was sonicated for 5 min at room temperature
and than centrifuged at 2500×g for 5 min. The
supernatant liquid was filtered through a 1.5 mm
membrane filter. A 4 ml volume of this solution
was diluted to 10 ml with the internal standard
solution.

2.7. Data analysis

2.7.1. ANN simulator software
MS-Windows based artificial neural network

simulator software, NNMODEL Version 1.404
(Neural Fusion) was used. Calculations were per-
formed on a 486 personal computer.

2.8. Training data

The properties of the training data determine
the number of inputs and output neurons. The
behaviour of the capacity factors (K %) of amiloride
and methyclothiazide to the changes in pH and
mobile phase composition were emulated using a
network of two inputs (pH, and methanol (%)),
one hidden layer and two outputs (K % for
amiloride and methylclothiazide) (Table 1).

Neural networks were trained using different
numbers of hidden neurons (2–20) and training
cycles (5000–35 000). At the start of a training
run, both weights and biases were initialized with
random values. During training, modifications of
the network weights and biases were made by
back-propagation of the error. While the network
was being optimized, the testing data (Table 1),
were fed into the network to evaluate the trained
network.

A problem in constructing the ANN was to find
the optimal number of hidden neurons. Another
problem was overfitting which occurs when the
training data contain noise and the ANN is mod-
elling the noise instead of the underlying features.
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Fig. 4. Response surfaces for multifactor effect of pH and
methanol % on a) methylclothiazide and (b) amiloride capacity
factors generated by RSM.

ber of neurons in the hidden layer ranged from 2
to 20. Neurons were added to the hidden layer
two at a time. The networks were trained and
tested after each addition. After addition of the
20th hidden neurons, it became evident that more
hidden neurons did not improve the generaliza-
tion ability of the network (Fig. 2).

3.2. Training of the networks

To compare the predictive power of the neural
network model, sum of squares errors were calcu-
lated and compared after each training cycle. The
performance of the network on the testing set
gives a reasonable estimate of the network predic-
tion ability (Table 1).

The lowest testing SSE was obtained with 10
hidden neurones and at 15 000 training cycles.
After 20 000 cycles extra training made the predic-
tion ability worse and the test error began to
increase. This effect is called overtraining or
overfitting (Fig. 2).

3.3. Data 6alidation

In order to test the predictions of the ANN and
RSM five additional experiments were performed.
The factor levels of the input variables were cho-
sen so that they were within the range of the
training experimental data. This operation is
called interrogation of the model. The average
error percentage [12] for each drug (ERR%) was
used to examine the best generalization ability of
the models,

ERR%= %
n

i=1

abs
�

1−
yi

ti

�
×100%/n

where n is the number of validation sets for a
drug, ti is the measured capacity factor value and
yi denotes the predicted capacity factors by the
model for a drug (Table 4).

The combined effect of pH and methanol per-
centage on the capacity factors generated by the
best ANN model is presented in Fig. 3.

3.4. Multifactor regression model

Ten experiments were performed (pH 2.8, 3.5,
4.2 and methanol percentage of 10, 30, 50%, with

3. Results and discussion

3.1. Network topologies

The number of connections in the network is
dependent upon the number of neurons in the
hidden layer. In the training phase the informa-
tion of the training data is transformed to weight
values of the connections. Therefore, the number
of connections might have a significant effect on
the network performance. Since there are no theo-
retical principles for choosing the proper network
topology several structures were tested. The num-
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Table 4
Predicted K % values for methylclothiazide and amiloride

pH Predicted K %Measured K %Methanol (%)

ANN**ANN*RSM

Predicted K % for methylclothiazide
0.288 0.2850.3740.38230 3

0.581 0.483 0.37020 0.4243
0.480 0.48750 3 0.494 0.424

0.2370.340 0.2170.22940 3.9
0.547 0.662 0.58115 0.7343.2

0.14360.0995ERR(%) = 0.2208

Predicted K % for amiloride
0.6570.562 0.5640.81930 3

0.891 1.268 1.03420 0.9533
0.470 0.16850 3 0.198 0.132

0.8120.495 0.9321.03740 3.9
1.564 2.008 1.67715 1.6783.2

0.40350.1595ERR (%) = 0.5707

* ANN with 10 hidden neurons at 15 000 training cycles.
** ANN with 10 hidden neurons at 20 000 training cycles.

a replicate at the mid point) and according to the
experimental data (Table 2) model fitting methods
gave the equation for the relationship between the
methyclothiazide capacity factor and pH and mo-
bile phase composition:

K %=1.2001−0.0716x1+0.1423x2+0.0010x2
1

−0.0188x2
2−0.0012x1x2

and for the amiloride capacity factor:

K %+0.4029−0.0606x1+0.7202x2+0.0022x2
1

+0.1596x2
2−0.0400x1x2

x1=methanol(%)

x2=pH

The standard errors of the regression parame-
ters and F-test for the significance of the regres-
sion and for the lack of fit of the model are given
in Table 3. Predicted response surfaces drawn
from the fitted equations are shown in Fig. 4.

3.5. Comparison of the best network and the
regression model

To examine the predictive power of the regres-

sion model with the neural network model we
compared experimental and predicted capacity
factor values and ERR% for each drug (Table 4).
These results show that, although the predictive
power of the polynomial regression model is very
good, it is possible to predict capacity factors
more accurately using the neural networks model.
Perhaps alternative regression models using vari-
ous transforms would have given better predic-
tion, but it would be time consuming to select the
best from the infinite number of possible models.
The network, however, constructed one model for
all capacity factor solutes at all design points used
for training. In this way the information is ob-
tained more completely as the peak sequence in
the different chromatograms can contribute to the
model.

4. Conclusions

The neural network approach is a very power-
ful tool in HPLC method development. Capacity
factors can be estimated with better or equal
results to those obtained by the multiple regres-
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sion technique. At the same time neural networks
offer greater flexibility and potential than a non-
linear multiple regression. We have selected to test
the applicability of ANNs using the standard
backpropagation algorithm for optimizing the
composition of mobile phase, but there are several
different training algorithms available, and their
suitability should be studied in the future.
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